Elevate RAG for numerical analysis using Amazon Bedrock Knowledge Bases

In the realm of generative artificial intelligence (AI), Retrieval Augmented Generation (RAG) has emerged as a powerful technique, enabling foundation models (FMs) to use external knowledge sources for enhanced text generation. Amazon Bedrock is a fully managed service that offers a choice of high-performing FMs from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, … Read more

Llama 3.2 models from Meta are now available in Amazon SageMaker JumpStart

Today, we are excited to announce the availability of Llama 3.2 models in Amazon SageMaker JumpStart. Llama 3.2 offers multi-modal vision and lightweight models representing Meta’s latest advancement in large language models (LLMs), providing enhanced capabilities and broader applicability across various use cases. With a focus on responsible innovation and system-level safety, these new models … Read more

Vision use cases with Llama 3.2 11B and 90B models from Meta

Today, we are excited to announce the availability of Llama 3.2 in Amazon SageMaker JumpStart and Amazon Bedrock. The Llama 3.2 models are a collection of state-of-the-art pre-trained and instruct fine-tuned generative AI models that come in various sizes—in lightweight text-only 1B and 3B parameter models suitable for edge devices, to small and medium-sized 11B … Read more

How generative AI is transforming legal tech with AWS

Legal professionals often spend a significant portion of their work searching through and analyzing large documents to draw insights, prepare arguments, create drafts, and compare documents. The rise of generative artificial intelligence (AI) has brought an inflection of foundation models (FMs). These FMs, with simple instructions (prompts), can perform various tasks such as drafting emails, … Read more

Deploy generative AI agents in your contact center for voice and chat using Amazon Connect, Amazon Lex, and Amazon Bedrock Knowledge Bases

This post is co-written with Vraj Shah and Chaitanya Hari from DoorDash. DoorDash connects consumers with their favorite local businesses in more than 30 countries across the globe. Recently, they faced a significant challenge in handling the high volume of calls from its contractor delivery workers, known as Dashers. With a user base of over … Read more

Harnessing the power of AI to drive equitable climate solutions: The AI for Equity Challenge

The climate crisis is one of the greatest challenges facing our world today. Its impacts are far-reaching, affecting every aspect of our lives—from public health and food security to economic stability and social justice. What’s more, the effects of climate change disproportionately burden the world’s most vulnerable populations, exacerbating existing inequities around gender, race, and … Read more

Enhancing Just Walk Out technology with multi-modal AI

Since its launch in 2018, Just Walk Out technology by Amazon has transformed the shopping experience by allowing customers to enter a store, pick up items, and leave without standing in line to pay. You can find this checkout-free technology in over 180 third-party locations worldwide, including travel retailers, sports stadiums, entertainment venues, conference centers, … Read more

Generate synthetic data for evaluating RAG systems using Amazon Bedrock

Evaluating your Retrieval Augmented Generation (RAG) system to make sure it fulfils your business requirements is paramount before deploying it to production environments. However, this requires acquiring a high-quality dataset of real-world question-answer pairs, which can be a daunting task, especially in the early stages of development. This is where synthetic data generation comes into … Read more

Making traffic lights more efficient with Amazon Rekognition

State and local agencies spend approximately $1.23 billion annually to operate and maintain signalized traffic intersections. On the other end, traffic congestion at intersections costs drivers about $22 billion annually. Implementing an artificial intelligence (AI)-powered detection-based solution can significantly mitigate congestion at intersections and reduce operation and maintenance costs. In this blog post, we show you … Read more

Accelerate development of ML workflows with Amazon Q Developer in Amazon SageMaker Studio

Machine learning (ML) projects are inherently complex, involving multiple intricate steps—from data collection and preprocessing to model building, deployment, and maintenance. Data scientists face numerous challenges throughout this process, such as selecting appropriate tools, needing step-by-step instructions with code samples, and troubleshooting errors and issues. These iterative challenges can hinder progress and slow down projects. … Read more

Govern generative AI in the enterprise with Amazon SageMaker Canvas

With the rise of powerful foundation models (FMs) powered by services such as Amazon Bedrock and Amazon SageMaker JumpStart, enterprises want to exercise granular control over which users and groups can access and use these models. This is crucial for compliance, security, and governance. Launched in 2021, Amazon SageMaker Canvas is a visual point-and-click service … Read more

Transforming home ownership with Amazon Transcribe Call Analytics, Amazon Comprehend, and Amazon Bedrock: Rocket Mortgage’s journey with AWS

This post is co-written with Josh Zook and Alex Hamilton from Rocket Mortgage. Rocket Mortgage, America’s largest retail mortgage lender, revolutionizes homeownership with Rocket Logic – Synopsis, an AI tool built on AWS.  This innovation has transformed client interactions and operational efficiency through the use of Amazon Transcribe Call Analytics, Amazon Comprehend, and Amazon Bedrock. … Read more

Integrate dynamic web content in your generative AI application using a web search API and Amazon Bedrock Agents

Amazon Bedrock Agents offers developers the ability to build and configure autonomous agents in their applications. These agents help users complete actions based on organizational data and user input, orchestrating interactions between foundation models (FMs), data sources, software applications, and user conversations. Amazon Bedrock agents use the power of large language models (LLMs) to perform … Read more

Build a generative AI assistant to enhance employee experience using Amazon Q Business

In today’s fast-paced business environment, organizations are constantly seeking innovative ways to enhance employee experience and productivity. There are many challenges that can impact employee productivity, such as cumbersome search experiences or finding specific information across an organization’s vast knowledge bases. Additionally, with the rise of remote and hybrid work models, traditional support systems such … Read more

Introducing document-level sync reports: Enhanced data sync visibility in Amazon Kendra

Amazon Kendra is an intelligent search service powered by machine learning (ML). Amazon Kendra helps you aggregate content from a variety of content repositories into a centralized index that lets you quickly search all your enterprise data and find the most accurate answer. Amazon Kendra securely connects to over 40 data sources. When using your data … Read more

Fine-tune Meta Llama 3.1 models using torchtune on Amazon SageMaker

This post is co-written with Meta’s PyTorch team. In today’s rapidly evolving AI landscape, businesses are constantly seeking ways to use advanced large language models (LLMs) for their specific needs. Although foundation models (FMs) offer impressive out-of-the-box capabilities, true competitive advantage often lies in deep model customization through fine-tuning. However, fine-tuning LLMs for complex tasks … Read more

Integrate Amazon Bedrock Knowledge Bases with Microsoft SharePoint as a data source

Amazon Bedrock Knowledge Bases provides foundation models (FMs) and agents in Amazon Bedrock contextual information from your company’s private data sources for Retrieval Augmented Generation (RAG) to deliver more relevant, accurate, and customized responses. Amazon Bedrock Knowledge Bases offers a fully managed RAG experience. The data sources that can be connected to as knowledge bases … Read more

Revolutionize logo design creation with Amazon Bedrock: Embracing generative art, dynamic logos, and AI collaboration

In the field of technology and creative design, logo design and creation has adapted and evolved at a rapid pace. From the hieroglyphs of ancient Egypt to the sleek minimalism of today’s tech giants, the visual identities that define our favorite brands have undergone a remarkable transformation. Today, the world of creative design is once … Read more

Reinvent personalization with generative AI on Amazon Bedrock using task decomposition for agentic workflows

Personalization has become a cornerstone of delivering tangible benefits to businesses and their customers. Generative AI and large language models (LLMs) offer new possibilities, although some businesses might hesitate due to concerns about consistency and adherence to company guidelines. This post presents an automated personalization solution that balances the innovative capabilities of LLMs with adherence … Read more

Accelerate pre-training of Mistral’s Mathstral model with highly resilient clusters on Amazon SageMaker HyperPod

In recent years, FM sizes have been increasing. It is important to consider the massive amount of compute often required to train these models. The compute clusters used in these scenarios are composed of more than thousands of AI accelerators such as GPUs or AWS Trainium and AWS Inferentia, custom machine learning (ML) chips designed … Read more

Building an efficient MLOps platform with OSS tools on Amazon ECS with AWS Fargate

This post has been co-written with Artem Sysuev, Danny Portman, Matúš Chládek, and Saurabh Gupta from Zeta Global. Zeta Global is a leading data-driven, cloud-based marketing technology company that empowers enterprises to acquire, grow and retain customers. The company’s Zeta Marketing Platform (ZMP) is the largest omnichannel marketing platform with identity data at its core. … Read more

Build RAG-based generative AI applications in AWS using Amazon FSx for NetApp ONTAP with Amazon Bedrock

The post is co-written with Michael Shaul and Sasha Korman from NetApp. Generative artificial intelligence (AI) applications are commonly built using a technique called Retrieval Augmented Generation (RAG) that provides foundation models (FMs) access to additional data they didn’t have during training. This data is used to enrich the generative AI prompt to deliver more … Read more

Support for AWS DeepComposer ending soon

AWS DeepComposer was first introduced during AWS re:Invent 2019 as a fun way for developers to compose music by using generative AI. AWS DeepComposer was the world’s first machine learning (ML)-enabled keyboard for developers to get hands-on—literally—with a musical keyboard and the latest ML techniques to compose their own music. After careful consideration, we have … Read more

Preserve access and explore alternatives for Amazon Lookout for Equipment

Amazon Lookout for Equipment, the AWS machine learning (ML) service designed for industrial equipment predictive maintenance, will no longer be open to new customers effective October 17, 2024. Existing customers will be able to use the service (both using the AWS Management Console and API) as normal and AWS will continue to invest in security, … Read more

CRISPR-Cas9 guide RNA efficiency prediction with efficiently tuned models in Amazon SageMaker

The clustered regularly interspaced short palindromic repeat (CRISPR) technology holds the promise to revolutionize gene editing technologies, which is transformative to the way we understand and treat diseases. This technique is based in a natural mechanism found in bacteria that allows a protein coupled to a single guide RNA (gRNA) strand to locate and make … Read more

Improve RAG performance using Cohere Rerank

This post is co-written with Pradeep Prabhakaran from Cohere. Retrieval Augmented Generation (RAG) is a powerful technique that can help enterprises develop generative artificial intelligence (AI) apps that integrate real-time data and enable rich, interactive conversations using proprietary data. RAG allows these AI applications to tap into external, reliable sources of domain-specific knowledge, enriching the … Read more

Unlock AWS Cost and Usage insights with generative AI powered by Amazon Bedrock

Managing cloud costs and understanding resource usage can be a daunting task, especially for organizations with complex AWS deployments. AWS Cost and Usage Reports (AWS CUR) provides valuable data insights, but interpreting and querying the raw data can be challenging. In this post, we explore a solution that uses generative artificial intelligence (AI) to generate … Read more

Streamline workflow orchestration of a system of enterprise APIs using chaining with Amazon Bedrock Agents

Intricate workflows that require dynamic and complex API orchestration can often be complex to manage. In industries like insurance, where unpredictable scenarios are the norm, traditional automation falls short, leading to inefficiencies and missed opportunities. With the power of intelligent agents, you can simplify these challenges. In this post, we explore how chaining domain-specific agents … Read more

Build ultra-low latency multimodal generative AI applications using sticky session routing in Amazon

Amazon SageMaker is a fully managed machine learning (ML) service. With SageMaker, data scientists and developers can quickly and confidently build, train, and deploy ML models into a production-ready hosted environment. SageMaker provides a broad selection of ML infrastructure and model deployment options to help meet your ML inference needs. It also helps scale your … Read more