Optimizing Scoring Models: Effective Prompting Formats

:::info
Authors:

(1) Chengrun Yang, Google DeepMind and Equal contribution;

(2) Xuezhi Wang, Google DeepMind;

(3) Yifeng Lu, Google DeepMind;

(4) Hanxiao Liu, Google DeepMind;

(5) Quoc V. Le, Google DeepMind;

(6) Denny Zhou, Google DeepMind;

(7) Xinyun Chen, Google DeepMind and Equal contribution.

:::

Table of Links

Abstract and 1. Introduction

2 Opro: Llm as the Optimizer and 2.1 Desirables of Optimization by Llms

2.2 Meta-Prompt Design

3 Motivating Example: Mathematical Optimization and 3.1 Linear Regression

3.2 Traveling Salesman Problem (TSP)

4 Application: Prompt Optimization and 4.1 Problem Setup

4.2 Meta-Prompt Design

5 Prompt Optimization Experiments and 5.1 Evaluation Setup

5.2 Main Results

5.3 Ablation Studies

5.4 Overfitting Analysis in Prompt Optimization and 5.5 Comparison with Evoprompt

6 Related Work

7 Conclusion, Acknowledgments and References

A Some Failure Cases

B Prompting Formats for Scorer Llm

C Meta-Prompts and C.1 Meta-Prompt for Math Optimization

C.2 Meta-Prompt for Prompt Optimization

D Prompt Optimization Curves on the Remaining Bbh Tasks

E Prompt Optimization on Bbh Tasks – Tabulated Accuracies and Found Instructions

B PROMPTING FORMATS FOR SCORER LLM

Figure 14, 15, and 16 show examples of the Qbegin, Qend, and Abegin prompting formats when the “QA” pattern is present. The “QA” pattern is eliminated when prompting instruction-tuned scorer models like text-bison with the Qbegin and Q_end formats (Figure 17 and 18).

:::info
This paper is available on arxiv under CC0 1.0 DEED license.

:::

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.