Extending Direct Nash Optimization for Regularized Preferences

:::info
Authors:

(1) Corby Rosset, Microsoft Research and Correspondence to corbyrosset@microsoft.com;

(2) Ching-An Cheng, Microsoft Research;

(3) Arindam Mitra, Microsoft Research;

(4) Michael Santacroce, Microsoft Research;

(5) Ahmed Awadallah, Microsoft Research and Correspondence to hassanam@microsoft.com;

(6) Tengyang Xie, Microsoft Research and Correspondence to tengyangxie@microsoft.com.

:::

Table of Links

Abstract and 1 Introduction

2 Preliminaries

2.1 RLHF Based on Reward Models

2.2 RLHF with General Preferences

3 Direct Nash Optimization and 3.1 Derivation of Algorithm 1

3.2 Theoretical Analysis

4 Practical Algorithm – Iterative Contrastive Self-Improvement

5 Experiments and 5.1 Experimental Setup

5.2 Results and Analysis

6 Related Work

7 Conclusion and References


Appendix

A Extension to Regularized Preferences

B Detailed Proofs

C Additional Experimental Details

A Extension to Regularized Preferences

In this section, we discuss how to extend the DNO framework to the case of regularized preferences (defined in Eq. (5)),



which was first introduced and solved by Munos et al. (2023) via Nash-MD introduced earlier.





:::info
This paper is available on arxiv under CC BY 4.0 DEED license.

:::

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.