Announcing the updated Salesforce connector (V2) for Amazon Kendra

Amazon Kendra is a highly accurate and simple-to-use intelligent search service powered by machine learning (ML). Amazon Kendra offers a suite of data source connectors to simplify the process of ingesting and indexing your content, wherever it resides. Valuable data in organizations is stored in both structured and unstructured repositories. An enterprise search solution should … Read more

­­Speed ML development using SageMaker Feature Store and Apache Iceberg offline store compaction

Today, companies are establishing feature stores to provide a central repository to scale ML development across business units and data science teams. As feature data grows in size and complexity, data scientists need to be able to efficiently query these feature stores to extract datasets for experimentation, model training, and batch scoring. Amazon SageMaker Feature … Read more

Announcing the updated ServiceNow connector (V2) for Amazon Kendra

Amazon Kendra is a highly accurate and simple-to-use intelligent search service powered by machine learning (ML). Amazon Kendra offers a suite of data source connectors to simplify the process of ingesting and indexing your content, wherever it resides. Valuable data in organizations is stored in both structured and unstructured repositories. An enterprise search solution should … Read more

Power recommendations and search using an IMDb knowledge graph – Part 2

This three-part series demonstrates how to use graph neural networks (GNNs) and Amazon Neptune to generate movie recommendations using the IMDb and Box Office Mojo Movies/TV/OTT licensable data package, which provides a wide range of entertainment metadata, including over 1 billion user ratings; credits for more than 11 million cast and crew members; 9 million … Read more

Power recommendation and search using an IMDb knowledge graph – Part 1

The IMDb and Box Office Mojo Movies/TV/OTT licensable data package provides a wide range of entertainment metadata, including over 1 billion user ratings; credits for more than 11 million cast and crew members; 9 million movie, TV, and entertainment titles; and global box office reporting data from more than 60 countries. Many AWS media and … Read more

Accelerate the investment process with AWS Low Code-No Code services

The last few years have seen a tremendous paradigm shift in how institutional asset managers source and integrate multiple data sources into their investment process. With frequent shifts in risk correlations, unexpected sources of volatility, and increasing competition from passive strategies, asset managers are employing a broader set of third-party data sources to gain a … Read more

Automatically retrain neural networks with Renate

Today we announce the general availability of Renate, an open-source Python library for automatic model retraining. The library provides continual learning algorithms able to incrementally train a neural network as more data becomes available. By open-sourcing Renate, we would like to create a venue where practitioners working on real-world machine learning systems and researchers interested … Read more

Create Amazon SageMaker models using the PyTorch Model Zoo

Deploying high-quality, trained machine learning (ML) models to perform either batch or real-time inference is a critical piece of bringing value to customers. However, the ML experimentation process can be tedious—there are a lot of approaches requiring a significant amount of time to implement. That’s why pre-trained ML models like the ones provided in the PyTorch … Read more

New performance improvements in Amazon SageMaker model parallel library

Foundation models are large deep learning models trained on a vast quantity of data at scale. They can be further fine-tuned to perform a variety of downstream tasks and form the core backbone of enabling several AI applications. The most prominent category is large-language models (LLM), including auto-regressive models such as GPT variants trained to complete … Read more

Next generation Amazon SageMaker Experiments – Organize, track, and compare your machine learning trainings at scale

Today, we’re happy to announce updates to our Amazon SageMaker Experiments capability of Amazon SageMaker that lets you organize, track, compare and evaluate machine learning (ML) experiments and model versions from any integrated development environment (IDE) using the SageMaker Python SDK or boto3, including local Jupyter Notebooks. Machine learning (ML) is an iterative process. When solving … Read more

Introducing Fortuna: A library for uncertainty quantification

Proper estimation of predictive uncertainty is fundamental in applications that involve critical decisions. Uncertainty can be used to assess the reliability of model predictions, trigger human intervention, or decide whether a model can be safely deployed in the wild. We introduce Fortuna, an open-source library for uncertainty quantification. Fortuna provides calibration methods, such as conformal … Read more

How to evaluate the quality of the synthetic data – measuring from the perspective of fidelity, utility, and privacy

In an increasingly data-centric world, enterprises must focus on gathering both valuable physical information and generating the information that they need but can’t easily capture. Data access, regulation, and compliance are an increasing source of friction for innovation in analytics and artificial intelligence (AI). For highly regulated sectors such as Financial Services, Healthcare, Life Sciences, … Read more

Augment fraud transactions using synthetic data in Amazon SageMaker

Developing and training successful machine learning (ML) fraud models requires access to large amounts of high-quality data. Sourcing this data is challenging because available datasets are sometimes not large enough or sufficiently unbiased to usefully train the ML model and may require significant cost and time. Regulation and privacy requirements further prevent data use or … Read more

LightOn Lyra-fr model is now available on Amazon SageMaker

We are thrilled to announce the availability of the LightOn Lyra-fr foundation model for customers using Amazon SageMaker. LightOn is a leader in building foundation models specializing in European languages. Lyra-fr is a state-of-the-art French language model that can be used to build conversational AI, copywriting tools, text classifiers, semantic search, and more. You can … Read more

Automatically identify languages in multi-lingual audio using Amazon Transcribe

If you operate in a country with multiple official languages or across multiple regions, your audio files can contain different languages. Participants may be speaking entirely different languages or may switch between languages. Consider a customer service call to report a problem in an area with a substantial multi-lingual population. Although the conversation could begin … Read more

Translate multiple source language documents to multiple target languages using Amazon Translate

Enterprises need to translate business-critical content such as marketing materials, instruction manuals, and product catalogs across multiple languages to communicate with a global audience of customers, partners, and stakeholders. Identifying the source language in each document before calling a translate job creates complexities and adds another step to your workflow. For example, an international product … Read more

Introducing Amazon SageMaker Data Wrangler’s new embedded visualizations

Manually inspecting data quality and cleaning data is a painful and time-consuming process that can take a huge chunk of a data scientist’s time on a project. According to a 2020 survey of data scientists conducted by Anaconda, data scientists spend approximately 66% of their time on data preparation and analysis tasks, including loading (19%), cleaning (26%), … Read more

Start your successful journey with time series forecasting with Amazon Forecast

Organizations of all sizes are striving to grow their business, improve efficiency, and serve their customers better than ever before. Even though the future is uncertain, a data-driven, science-based approach can help anticipate what lies ahead to successfully navigate through a sea of choices. Every industry uses time series forecasting to address a variety of … Read more

Chronomics detects COVID-19 test results with Amazon Rekognition Custom Labels

Chronomics is a tech-bio company that uses biomarkers—quantifiable information taken from the analysis of molecules—alongside technology to democratize the use of science and data to improve the lives of people. Their goal is to analyze biological samples and give actionable information to help you make decisions—about anything where knowing more about the unseen is important. … Read more

Image augmentation pipeline for Amazon Lookout for Vision

Amazon Lookout for Vision provides a machine learning (ML)-based anomaly detection service to identify normal images (i.e., images of objects without defects) vs anomalous images (i.e., images of objects with defects), types of anomalies (e.g., missing piece), and the location of these anomalies. Therefore, Lookout for Vision is popular among customers that look for automated … Read more

Amazon SageMaker JumpStart now offers Amazon Comprehend notebooks for custom classification and custom entity detection

Amazon Comprehend is a natural language processing (NLP) service that uses machine learning (ML) to discover insights from text. Amazon Comprehend provides customized features, custom entity recognition, custom classification, and pre-trained APIs such as key phrase extraction, sentiment analysis, entity recognition, and more so you can easily integrate NLP into your applications. We recently added … Read more

Prepare data from Amazon EMR for machine learning using Amazon SageMaker Data Wrangler

Data preparation is a principal component of machine learning (ML) pipelines. In fact, it is estimated that data professionals spend about 80 percent of their time on data preparation. In this intensive competitive market, teams want to analyze data and extract more meaningful insights quickly. Customers are adopting more efficient and visual ways to build … Read more

Exafunction supports AWS Inferentia to unlock best price performance for machine learning inference

Across all industries, machine learning (ML) models are getting deeper, workflows are getting more complex, and workloads are operating at larger scales. Significant effort and resources are put into making these models more accurate since this investment directly results in better products and experiences. On the other hand, making these models run efficiently in production … Read more

Damage assessment using Amazon SageMaker geospatial capabilities and custom SageMaker models

In this post, we show how to train, deploy, and predict natural disaster damage with Amazon SageMaker with geospatial capabilities. We use the new SageMaker geospatial capabilities to generate new inference data to test the model. Many government and humanitarian organizations need quick and accurate situational awareness when a disaster strikes. Knowing the severity, cause, … Read more

Deploy Amazon SageMaker Autopilot models to serverless inference endpoints

Amazon SageMaker Autopilot automatically builds, trains, and tunes the best machine learning (ML) models based on your data, while allowing you to maintain full control and visibility. Autopilot can also deploy trained models to real-time inference endpoints automatically. If you have workloads with spiky or unpredictable traffic patterns that can tolerate cold starts, then deploying … Read more

Improve scalability for Amazon Rekognition stateless APIs using multiple regions

In previous blog post, we described an end-to-end identity verification solution in a single AWS Region. The solution uses the Amazon Rekognition APIs DetectFaces for face detection and CompareFaces for face comparison. We think of those APIs as stateless APIs because they don’t depend on an Amazon Rekognition face collection. They’re also idempotent, meaning repeated … Read more

Use your own training scripts and automatically select the best model using hyperparameter optimization in Amazon SageMaker

The success of any machine learning (ML) pipeline depends not just on the quality of model used, but also the ability to train and iterate upon this model. One of the key ways to improve an ML model is by choosing better tunable parameters, known as hyperparameters. This is known as hyperparameter optimization (HPO). However, … Read more

Build a robust text-based toxicity predictor

With the growth and popularity of online social platforms, people can stay more connected than ever through tools like instant messaging. However, this raises an additional concern about toxic speech, as well as cyber bullying, verbal harassment, or humiliation. Content moderation is crucial for promoting healthy online discussions and creating healthy online environments. To detect … Read more

Metrics for evaluating an identity verification solution

Globally, there has been an accelerated shift toward frictionless digital user experiences. Whether it’s registering at a website, transacting online, or simply logging in to your bank account, organizations are actively trying to reduce the friction their customers experience while at the same time enhance their security, compliance, and fraud prevention measures. The shift toward … Read more