Transfer learning for TensorFlow text classification models in Amazon SageMaker

Amazon SageMaker provides a suite of built-in algorithms, pre-trained models, and pre-built solution templates to help data scientists and machine learning (ML) practitioners get started training and deploying ML models quickly. You can use these algorithms and models for both supervised and unsupervised learning. They can process various types of input data, including tabular, image, … Read more

Intelligent document processing with AWS AI and Analytics services in the insurance industry: Part 2

In Part 1 of this series, we discussed intelligent document processing (IDP), and how IDP can accelerate claims processing use cases in the insurance industry. We discussed how we can use AWS AI services to accurately categorize claims documents along with supporting documents. We also discussed how to extract various types of documents in an … Read more

Intelligent document processing with AWS AI services in the insurance industry: Part 1

The goal of intelligent document processing (IDP) is to help your organization make faster and more accurate decisions by applying AI to process your paperwork. This two-part series highlights the AWS AI technologies that insurance companies can use to speed up their business processes. These AI technologies can be used across insurance use cases such … Read more

Improving stability and flexibility of ML pipelines at Amazon Packaging Innovation with Amazon SageMaker Pipelines

To delight customers and minimize packaging waste, Amazon must select the optimal packaging type for billions of packages shipped every year. If too little protection is used for a fragile item such as a coffee mug, the item will arrive damaged and Amazon risks their customer’s trust. Using too much protection will result in increased … Read more

Improve data extraction and document processing with Amazon Textract

Intelligent document processing (IDP) has seen widespread adoption across enterprise and government organizations. Gartner estimates the IDP market will grow more than 100% year over year, and is projected to reach $4.8 billion in 2022. IDP helps transform structured, semi-structured, and unstructured data from a variety of document formats into actionable information. Processing unstructured data … Read more

Automated exploratory data analysis and model operationalization framework with a human in the loop

Identifying, collecting, and transforming data is the foundation for machine learning (ML). According to a Forbes survey, there is widespread consensus among ML practitioners that data preparation accounts for approximately 80% of the time spent in developing a viable ML model. In addition, many of our customers face several challenges during the model operationalization phase … Read more

Move Amazon SageMaker Autopilot ML models from experimentation to production using Amazon SageMaker Pipelines

Amazon SageMaker Autopilot automatically builds, trains, and tunes the best custom machine learning (ML) models based on your data. It’s an automated machine learning (AutoML) solution that eliminates the heavy lifting of handwritten ML models that requires ML expertise. Data scientists need to only provide a tabular dataset and select the target column to predict, … Read more

Startups across AWS Accelerators use AI and ML to solve mission-critical customer challenges

Relentless advancement in technology is improving the decision-making capacity of humans and enterprises alike. Digitization of the physical world has accelerated the three dimensions of data: velocity, variety, and volume. This has made information more widely available than before, allowing for advancements in problem-solving. Now, with cloud-enabled democratized availability, technologies like artificial intelligence (AI) and … Read more

Cost efficient ML inference with multi-framework models on Amazon SageMaker 

Machine learning (ML) has proven to be one of the most successful and widespread applications of technology, affecting a wide range of industries and impacting billions of users every day. With this rapid adoption of ML into every industry, companies are facing challenges in supporting low-latency predictions and with high availability while maximizing resource utilization … Read more

Solve business problems end-to-end through machine learning in Amazon SageMaker JumpStart solutions

Amazon SageMaker JumpStart provides pre-trained, open-source models for a wide range of problem types to help you get started with machine learning (ML). JumpStart also provides solution templates that set up infrastructure for common use cases, and executable example notebooks for ML with Amazon SageMaker. As a business user, you get to do the following … Read more

Train gigantic models with near-linear scaling using sharded data parallelism on Amazon SageMaker

In the pursuit of superior accuracy, deep learning models in areas such as natural language processing and computer vision have significantly grown in size in the past few years, frequently counted in tens to hundreds of billions of parameters. Training these gigantic models is challenging and requires complex distribution strategies. Data scientists and machine learning … Read more

Improve price performance of your model training using Amazon SageMaker heterogeneous clusters

This post is co-written with Chaim Rand from Mobileye. Certain machine learning (ML) workloads, such as training computer vision models or reinforcement learning, often involve combining the GPU- or accelerator-intensive task of neural network model training with the CPU-intensive task of data preprocessing, like image augmentation. When both types of tasks run on the same … Read more

Reduce food waste to improve sustainability and financial results in retail with Amazon Forecast

With environmental, social, and governance (ESG) initiatives becoming more important for companies, our customer, one of Greater China region’s top convenience store chains, has been seeking a solution to reduce food waste (currently over $3.5 million USD per year). Doing so will allow them to not only realize substantial operating savings, but also support corporate … Read more

Amazon SageMaker Automatic Model Tuning now supports grid search

Today Amazon SageMaker announced the support of Grid search for automatic model tuning, providing users with an additional strategy to find the best hyperparameter configuration for your model. Amazon SageMaker automatic model tuning finds the best version of a model by running many training jobs on your dataset using a range of hyperparameters that you … Read more

Introducing the Amazon SageMaker Serverless Inference Benchmarking Toolkit

Amazon SageMaker Serverless Inference is a purpose-built inference option that makes it easy for you to deploy and scale machine learning (ML) models. It provides a pay-per-use model, which is ideal for services where endpoint invocations are infrequent and unpredictable. Unlike a real-time hosting endpoint, which is backed by a long-running instance, compute resources for … Read more

Deploy a machine learning inference data capture solution on AWS Lambda

Monitoring machine learning (ML) predictions can help improve the quality of deployed models. Capturing the data from inferences made in production can enable you to monitor your deployed models and detect deviations in model quality. Early and proactive detection of these deviations enables you to take corrective actions, such as retraining models, auditing upstream systems, … Read more

Run inference at scale for OpenFold, a PyTorch-based protein folding ML model, using Amazon EKS

This post was co-written with Sachin Kadyan, a leading developer of OpenFold. In drug discovery, understanding the 3D structure of proteins is key to assessing the ability of a drug to bind to it, directly impacting its efficacy. Predicting the 3D protein form, however, is very complex, challenging, expensive, and time consuming, and can take … Read more

Run multiple deep learning models on GPU with Amazon SageMaker multi-model endpoints

As AI adoption is accelerating across the industry, customers are building sophisticated models that take advantage of new scientific breakthroughs in deep learning. These next-generation models allow you to achieve state-of-the-art, human-like performance in the fields of natural language processing (NLP), computer vision, speech recognition, medical research, cybersecurity, protein structure prediction, and many others. For … Read more

Reduce deep learning training time and cost with MosaicML Composer on AWS

In the past decade, we have seen Deep learning (DL) science adopted at a tremendous pace by AWS customers. The plentiful and jointly trained parameters of DL models have a large representational capacity that brought improvements in numerous customer use cases, including image and speech analysis, natural language processing (NLP), time series processing, and more. … Read more

Enable CI/CD of multi-Region Amazon SageMaker endpoints

Amazon SageMaker and SageMaker inference endpoints provide a capability of training and deploying your AI and machine learning (ML) workloads. With inference endpoints, you can deploy your models for real-time or batch inference. The endpoints support various types of ML models hosted using AWS Deep Learning Containers or your own containers with custom AI/ML algorithms. … Read more

Detect fraudulent transactions using machine learning with Amazon SageMaker

Businesses can lose billions of dollars each year due to malicious users and fraudulent transactions. As more and more business operations move online, fraud and abuses in online systems are also on the rise. To combat online fraud, many businesses have been using rule-based fraud detection systems. However, traditional fraud detection systems rely on a … Read more

Implement RStudio on your AWS environment and access your data lake using AWS Lake Formation permissions

R is a popular analytic programming language used by data scientists and analysts to perform data processing, conduct statistical analyses, create data visualizations, and build machine learning (ML) models. RStudio, the integrated development environment for R, provides open-source tools and enterprise-ready professional software for teams to develop and share their work across their organization Building, … Read more

Design patterns for serial inference on Amazon SageMaker

As machine learning (ML) goes mainstream and gains wider adoption, ML-powered applications are becoming increasingly common to solve a range of complex business problems. The solution to these complex business problems often requires using multiple ML models. These models can be sequentially combined to perform various tasks, such as preprocessing, data transformation, model selection, inference … Read more

Train a time series forecasting model faster with Amazon SageMaker Canvas Quick build

Today, Amazon SageMaker Canvas introduces the ability to use the Quick build feature with time series forecasting use cases. This allows you to train models and generate the associated explainability scores in under 20 minutes, at which point you can generate predictions on new, unseen data. Quick build training enables faster experimentation to understand how … Read more

Use Amazon SageMaker Canvas for exploratory data analysis

Exploratory data analysis (EDA) is a common task performed by business analysts to discover patterns, understand relationships, validate assumptions, and identify anomalies in their data. In machine learning (ML), it’s important to first understand the data and its relationships before getting into model building. Traditional ML development cycles can sometimes take months and require advanced … Read more

Run ensemble ML models on Amazon SageMaker

Model deployment in machine learning (ML) is becoming increasingly complex. You want to deploy not just one ML model but large groups of ML models represented as ensemble workflows. These workflows are comprised of multiple ML models. Productionizing these ML models is challenging because you need to adhere to various performance and latency requirements. Amazon … Read more