Churn prediction using multimodality of text and tabular features with Amazon SageMaker Jumpstart

Amazon SageMaker JumpStart is the Machine Learning (ML) hub of SageMaker providing pre-trained, publicly available models for a wide range of problem types to help you get started with machine learning. Understanding customer behavior is top of mind for every business today. Gaining insights into why and how customers buy can help grow revenue. Customer churn is … Read more

Leveraging artificial intelligence and machine learning at Parsons with AWS DeepRacer

This post is co-written with Jennifer Bergstrom, Sr. Technical Director, ParsonsX. Parsons Corporation (NYSE:PSN) is a leading disruptive technology company in critical infrastructure, national defense, space, intelligence, and security markets providing solutions across the globe to help make the world safer, healthier, and more connected. Parsons provides services and capabilities across cybersecurity, missile defense, space ground … Read more

How Thomson Reuters built an AI platform using Amazon SageMaker to accelerate delivery of ML projects

This post is co-written by Ramdev Wudali and Kiran Mantripragada from Thomson Reuters. In 1992, Thomson Reuters (TR) released its first AI legal research service, WIN (Westlaw Is Natural), an innovation at the time, as most search engines only supported Boolean terms and connectors. Since then, TR has achieved many more milestones as its AI … Read more

Federated Learning on AWS with FedML: Health analytics without sharing sensitive data – Part 2

Analyzing real-world healthcare and life sciences (HCLS) data poses several practical challenges, such as distributed data silos, lack of sufficient data at a single site for rare events, regulatory guidelines that prohibit data sharing, infrastructure requirement, and cost incurred in creating a centralized data repository. Because they’re in a highly regulated domain, HCLS partners and … Read more

Federated Learning on AWS with FedML: Health analytics without sharing sensitive data – Part 1

This blog post is co-written with Chaoyang He and Salman Avestimehr from FedML. Analyzing real-world healthcare and life sciences (HCLS) data poses several practical challenges, such as distributed data silos, lack of sufficient data at any single site for rare events, regulatory guidelines that prohibit data sharing, infrastructure requirement, and cost incurred in creating a … Read more

Multilingual customer support translation made easy on Salesforce Service Cloud using Amazon Translate

This post was co-authored with Mark Lott, Distinguished Technical Architect, Salesforce, Inc. Enterprises that operate globally are experiencing challenges sourcing customer support professionals with multi-lingual experience. This process can be cost-prohibitive and difficult to scale, leading many enterprises to only support English for chats. Using human interpreters for translation support is expensive, and infeasible since … Read more

Enriching real-time news streams with the Refinitiv Data Library, AWS services, and Amazon SageMaker

This post is co-authored by Marios Skevofylakas, Jason Ramchandani and Haykaz Aramyan from Refinitiv, An LSEG Business. Financial service providers often need to identify relevant news, analyze it, extract insights, and take actions in real time, like trading specific instruments (such as commodities, shares, funds) based on additional information or context of the news item. … Read more

Best practices for load testing Amazon SageMaker real-time inference endpoints

Amazon SageMaker is a fully managed machine learning (ML) service. With SageMaker, data scientists and developers can quickly and easily build and train ML models, and then directly deploy them into a production-ready hosted environment. It provides an integrated Jupyter authoring notebook instance for easy access to your data sources for exploration and analysis, so … Read more

Get smarter search results with the Amazon Kendra Intelligent Ranking and OpenSearch plugin

If you’ve had the opportunity to build a search application for unstructured data (i.e., wiki, informational web sites, self-service help pages, internal documentation, etc.) using open source or commercial-off-the-shelf search engines, then you’re probably familiar with the inherent accuracy challenges involved in getting relevant search results. The intended meaning of both query and document can … Read more

Model hosting patterns in Amazon SageMaker, Part 1: Common design patterns for building ML applications on Amazon SageMaker

Machine learning (ML) applications are complex to deploy and often require the ability to hyper-scale, and have ultra-low latency requirements and stringent cost budgets. Use cases such as fraud detection, product recommendations, and traffic prediction are examples where milliseconds matter and are critical for business success. Strict service level agreements (SLAs) need to be met, … Read more

Best practices for creating Amazon Lex interaction models

Amazon Lex is an AWS service for building conversational interfaces into any application using voice and text, enabling businesses to add sophisticated, natural language chatbots across different channels. Amazon Lex uses machine learning (ML) to understand natural language (normal conversational text and speech). In this post, we go through a set of best practices for … Read more

Power recommendations and search using an IMDb knowledge graph – Part 3

This three-part series demonstrates how to use graph neural networks (GNNs) and Amazon Neptune to generate movie recommendations using the IMDb and Box Office Mojo Movies/TV/OTT licensable data package, which provides a wide range of entertainment metadata, including over 1 billion user ratings; credits for more than 11 million cast and crew members; 9 million … Read more

AWS positioned in the Leaders category in the 2022 IDC MarketScape for APEJ AI Life-Cycle Software Tools and Platforms Vendor Assessment

The recently published IDC MarketScape: Asia/Pacific (Excluding Japan) AI Life-Cycle Software Tools and Platforms 2022 Vendor Assessment positions AWS in the Leaders category. This was the first and only APEJ-specific analyst evaluation focused on AI life-cycle software from IDC. The vendors evaluated for this MarketScape offer various software tools needed to support end-to-end machine learning … Read more

How Thomson Reuters delivers personalized content subscription plans at scale using Amazon Personalize

This post is co-written by Hesham Fahim from Thomson Reuters. Thomson Reuters (TR) is one of the world’s most trusted information organizations for businesses and professionals. It provides companies with the intelligence, technology, and human expertise they need to find trusted answers, enabling them to make better decisions more quickly. TR’s customers span across the … Read more

Connecting Amazon Redshift and RStudio on Amazon SageMaker

Last year, we announced the general availability of RStudio on Amazon SageMaker, the industry’s first fully managed RStudio Workbench integrated development environment (IDE) in the cloud. You can quickly launch the familiar RStudio IDE and dial up and down the underlying compute resources without interrupting your work, making it easy to build machine learning (ML) … Read more

Use machine learning to detect anomalies and predict downtime with Amazon Timestream and Amazon Lookout for Equipment

The last decade of the Industry 4.0 revolution has shown the value and importance of machine learning (ML) across verticals and environments, with more impact on manufacturing than possibly any other application. Organizations implementing a more automated, reliable, and cost-effective Operational Technology (OT) strategy have led the way, recognizing the benefits of ML in predicting … Read more

2022H2 Amazon Textract launch summary

Documents are a primary tool for record keeping, communication, collaboration, and transactions across many industries, including financial, medical, legal, and real estate. The millions of mortgage applications and hundreds of millions of W2 tax forms processed each year are just a few examples of such documents. Critical business data remains unlocked in unstructured documents such … Read more

How to redact PII data in conversation transcripts

Customer service interactions often contain personally identifiable information (PII) such as names, phone numbers, and dates of birth. As organizations incorporate machine learning (ML) and analytics into their applications, using this data can provide insights on how to create more seamless customer experiences. However, the presence of PII information often restricts the use of this … Read more

Get to production-grade data faster by using new built-in interfaces with Amazon SageMaker Ground Truth Plus

Launched at AWS re:Invent 2021, Amazon SageMaker Ground Truth Plus helps you create high-quality training datasets by removing the undifferentiated heavy lifting associated with building data labeling applications and managing the labeling workforce. All you do is share data along with labeling requirements, and Ground Truth Plus sets up and manages your data labeling workflow … Read more

Announcing the updated Salesforce connector (V2) for Amazon Kendra

Amazon Kendra is a highly accurate and simple-to-use intelligent search service powered by machine learning (ML). Amazon Kendra offers a suite of data source connectors to simplify the process of ingesting and indexing your content, wherever it resides. Valuable data in organizations is stored in both structured and unstructured repositories. An enterprise search solution should … Read more

­­Speed ML development using SageMaker Feature Store and Apache Iceberg offline store compaction

Today, companies are establishing feature stores to provide a central repository to scale ML development across business units and data science teams. As feature data grows in size and complexity, data scientists need to be able to efficiently query these feature stores to extract datasets for experimentation, model training, and batch scoring. Amazon SageMaker Feature … Read more

Announcing the updated ServiceNow connector (V2) for Amazon Kendra

Amazon Kendra is a highly accurate and simple-to-use intelligent search service powered by machine learning (ML). Amazon Kendra offers a suite of data source connectors to simplify the process of ingesting and indexing your content, wherever it resides. Valuable data in organizations is stored in both structured and unstructured repositories. An enterprise search solution should … Read more

Power recommendations and search using an IMDb knowledge graph – Part 2

This three-part series demonstrates how to use graph neural networks (GNNs) and Amazon Neptune to generate movie recommendations using the IMDb and Box Office Mojo Movies/TV/OTT licensable data package, which provides a wide range of entertainment metadata, including over 1 billion user ratings; credits for more than 11 million cast and crew members; 9 million … Read more

Power recommendation and search using an IMDb knowledge graph – Part 1

The IMDb and Box Office Mojo Movies/TV/OTT licensable data package provides a wide range of entertainment metadata, including over 1 billion user ratings; credits for more than 11 million cast and crew members; 9 million movie, TV, and entertainment titles; and global box office reporting data from more than 60 countries. Many AWS media and … Read more

Accelerate the investment process with AWS Low Code-No Code services

The last few years have seen a tremendous paradigm shift in how institutional asset managers source and integrate multiple data sources into their investment process. With frequent shifts in risk correlations, unexpected sources of volatility, and increasing competition from passive strategies, asset managers are employing a broader set of third-party data sources to gain a … Read more

Automatically retrain neural networks with Renate

Today we announce the general availability of Renate, an open-source Python library for automatic model retraining. The library provides continual learning algorithms able to incrementally train a neural network as more data becomes available. By open-sourcing Renate, we would like to create a venue where practitioners working on real-world machine learning systems and researchers interested … Read more

Create Amazon SageMaker models using the PyTorch Model Zoo

Deploying high-quality, trained machine learning (ML) models to perform either batch or real-time inference is a critical piece of bringing value to customers. However, the ML experimentation process can be tedious—there are a lot of approaches requiring a significant amount of time to implement. That’s why pre-trained ML models like the ones provided in the PyTorch … Read more

New performance improvements in Amazon SageMaker model parallel library

Foundation models are large deep learning models trained on a vast quantity of data at scale. They can be further fine-tuned to perform a variety of downstream tasks and form the core backbone of enabling several AI applications. The most prominent category is large-language models (LLM), including auto-regressive models such as GPT variants trained to complete … Read more

Next generation Amazon SageMaker Experiments – Organize, track, and compare your machine learning trainings at scale

Today, we’re happy to announce updates to our Amazon SageMaker Experiments capability of Amazon SageMaker that lets you organize, track, compare and evaluate machine learning (ML) experiments and model versions from any integrated development environment (IDE) using the SageMaker Python SDK or boto3, including local Jupyter Notebooks. Machine learning (ML) is an iterative process. When solving … Read more