Provide a personalized experience for news readers using Amazon Personalize and Amazon Titan Text Embeddings on Amazon Bedrock

News publishers want to provide a personalized and informative experience to their readers, but the short shelf life of news articles can make this quite difficult. In news publishing, articles typically have peak readership within the same day of publication. Additionally, news publishers frequently publish new articles and want to show these articles to interested … Read more

Implementing tenant isolation using Agents for Amazon Bedrock in a multi-tenant environment

The number of generative artificial intelligence (AI) features is growing within software offerings, especially after market-leading foundational models (FMs) became consumable through an API using Amazon Bedrock. Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and … Read more

Connect the Amazon Q Business generative AI coding companion to your GitHub repositories with Amazon Q GitHub (Cloud) connector

Incorporating generative artificial intelligence (AI) into your development lifecycle can offer several benefits. For example, using an AI-based coding companion such as Amazon Q Developer can boost development productivity by up to 30 percent. Additionally, reducing the developer context switching that stems from frequent interactions with many different development tools can also increase developer productivity. … Read more

Elevate customer experience through an intelligent email automation solution using Amazon Bedrock

Organizations spend a lot of resources, effort, and money on running their customer care operations to answer customer questions and provide solutions. Your customers may ask questions through various channels, such as email, chat, or phone, and deploying a workforce to answer those queries can be resource intensive, time-consuming, and unproductive if the answers to … Read more

Build an end-to-end RAG solution using Knowledge Bases for Amazon Bedrock and the AWS CDK

Retrieval Augmented Generation (RAG) is a state-of-the-art approach to building question answering systems that combines the strengths of retrieval and generative language models. RAG models retrieve relevant information from a large corpus of text and then use a generative language model to synthesize an answer based on the retrieved information. The complexity of developing and … Read more

Index website contents using the Amazon Q Web Crawler connector for Amazon Q Business

Amazon Q Business is a fully managed service that lets you build interactive chat applications using your enterprise data. These applications can generate answers based on your data or a large language model (LLM) knowledge. Your data is not used for training purposes, and the answers provided by Amazon Q Business are based solely on … Read more

Getting started with cross-region inference in Amazon Bedrock

With the advent of generative AI solutions, a paradigm shift is underway across industries, driven by organizations embracing foundation models to unlock unprecedented opportunities. Amazon Bedrock has emerged as the preferred choice for numerous customers seeking to innovate and launch generative AI applications, leading to an exponential surge in demand for model inference capabilities. Bedrock … Read more

Building automations to accelerate remediation of AWS Security Hub control findings using Amazon Bedrock and AWS Systems Manager

Several factors can make remediating security findings challenging. First, the sheer volume and complexity of findings can overwhelm security teams, leading to delays in addressing critical issues. Findings often require a deep understanding of AWS services and configurations and require many cycles for validation, making it more difficult for less experienced teams to remediate issues … Read more

Secure RAG applications using prompt engineering on Amazon Bedrock

The proliferation of large language models (LLMs) in enterprise IT environments presents new challenges and opportunities in security, responsible artificial intelligence (AI), privacy, and prompt engineering. The risks associated with LLM use, such as biased outputs, privacy breaches, and security vulnerabilities, must be mitigated. To address these challenges, organizations must proactively ensure that their use … Read more

Get the most from Amazon Titan Text Premier

Amazon Titan Text Premier, the latest addition to the Amazon Titan family of large language models (LLMs), is now generally available in Amazon Bedrock. Amazon Titan Text Premier is an advanced, high performance, and cost-effective LLM engineered to deliver superior performance for enterprise-grade text generation applications, including optimized performance for Retrieval Augmented Generation (RAG) and … Read more

GenASL: Generative AI-powered American Sign Language avatars

In today’s world, effective communication is essential for fostering inclusivity and breaking down barriers. However, for individuals who rely on visual communication methods like American Sign Language (ASL), traditional communication tools often fall short. That’s where GenASL comes in. GenASL is a generative artificial intelligence (AI)-powered solution that translates speech or text into expressive ASL … Read more

AWS empowers sales teams using generative AI solution built on Amazon Bedrock

At AWS, we are transforming our seller and customer journeys by using generative artificial intelligence (AI) across the sales lifecycle. We envision a future where AI seamlessly integrates into our teams’ workflows, automating repetitive tasks, providing intelligent recommendations, and freeing up time for more strategic, high-value interactions. Our field organization includes customer-facing teams (account managers, … Read more

Build private and secure enterprise generative AI applications with Amazon Q Business using IAM Federation

Amazon Q Business is a conversational assistant powered by generative artificial intelligence (AI) that enhances workforce productivity by answering questions and completing tasks based on information in your enterprise systems, which each user is authorized to access. In an earlier post, we discussed how you can build private and secure enterprise generative AI applications with … Read more

Unleashing the power of generative AI: Verisk’s Discovery Navigator revolutionizes medical record review

This post is co-written with Sneha Godbole and Kate Riordan from Verisk. Verisk (Nasdaq: VRSK) is a leading strategic data analytics and technology partner to the global insurance industry. It empowers its customers to strengthen operating efficiency, improve underwriting and claims outcomes, combat fraud, and make informed decisions about global risks, including climate change, extreme … Read more

Index your Atlassian Confluence Cloud contents using the Amazon Q Confluence Cloud connector for Amazon Q Business

Amazon Q Business is a generative artificial intelligence (AI)-powered assistant designed to enhance enterprise operations. It’s a fully managed service that helps provide accurate answers to users’ questions while honoring the security and access restrictions of the content. It can be tailored to your specific business needs by connecting to your company’s information and enterprise … Read more

Snowflake Arctic models are now available in Amazon SageMaker JumpStart

This post is co-written with Matt Marzillo from Snowflake. Today, we are excited to announce that the Snowflake Arctic Instruct model is available through Amazon SageMaker JumpStart to deploy and run inference. Snowflake Arctic is a family of enterprise-grade large language models (LLMs) built by Snowflake to cater to the needs of enterprise users, exhibiting … Read more

Fine tune a generative AI application for Amazon Bedrock using Amazon SageMaker Pipeline decorators

Building a deployment pipeline for generative artificial intelligence (AI) applications at scale is a formidable challenge because of the complexities and unique requirements of these systems. Generative AI models are constantly evolving, with new versions and updates released frequently. This makes managing and deploying these updates across a large-scale deployment pipeline while providing consistency and … Read more

Enhance call center efficiency using batch inference for transcript summarization with Amazon Bedrock

Today, we are excited to announce general availability of batch inference for Amazon Bedrock. This new feature enables organizations to process large volumes of data when interacting with foundation models (FMs), addressing a critical need in various industries, including call center operations. Call center transcript summarization has become an essential task for businesses seeking to … Read more

Fine-tune Meta Llama 3.1 models for generative AI inference using Amazon SageMaker JumpStart

Fine-tuning Meta Llama 3.1 models with Amazon SageMaker JumpStart enables developers to customize these publicly available foundation models (FMs). The Meta Llama 3.1 collection represents a significant advancement in the field of generative artificial intelligence (AI), offering a range of capabilities to create innovative applications. The Meta Llama 3.1 models come in various sizes, with … Read more

Analyze customer reviews using Amazon Bedrock

Customer reviews can reveal customer experiences with a product and serve as an invaluable source of information to the product teams. By continually monitoring these reviews over time, businesses can recognize changes in customer perceptions and uncover areas of improvement. Analyzing these reviews to extract actionable insights enables data-driven decisions that can enhance customer experience … Read more

Accuracy evaluation framework for Amazon Q Business

Generative artificial intelligence (AI), particularly Retrieval Augmented Generation (RAG) solutions, are rapidly demonstrating their vast potential to revolutionize enterprise operations. RAG models combine the strengths of information retrieval systems with advanced natural language generation, enabling more contextually accurate and informative outputs. From automating customer interactions to optimizing backend operation processes, these technologies are not just … Read more

Elevate healthcare interaction and documentation with Amazon Bedrock and Amazon Transcribe using Live Meeting Assistant

Today, physicians spend about 49% of their workday documenting clinical visits, which impacts physician productivity and patient care. Did you know that for every eight hours that office-based physicians have scheduled with patients, they spend more than five hours in the EHR? As a consequence, healthcare practitioners exhibit a pronounced inclination towards conversational intelligence solutions, … Read more

Unlock the power of data governance and no-code machine learning with Amazon SageMaker Canvas and Amazon DataZone

Amazon DataZone is a data management service that makes it quick and convenient to catalog, discover, share, and govern data stored in AWS, on-premises, and third-party sources. Amazon DataZone allows you to create and manage data zones, which are virtual data lakes that store and process your data, without the need for extensive coding or … Read more

Accelerate performance using a custom chunking mechanism with Amazon Bedrock

This post is co-written with Kristina Olesova, Zdenko Esetok, and Selimcan akar from Accenture. In today’s data-driven world, organizations often face the challenge of extracting structured information from unstructured PDF documents. These PDFs can contain a myriad of elements, such as images, tables, headers, and text formatted in various styles, making it difficult to parse … Read more

Migrate Amazon SageMaker Data Wrangler flows to Amazon SageMaker Canvas for faster data preparation

Amazon SageMaker Data Wrangler provides a visual interface to streamline and accelerate data preparation for machine learning (ML), which is often the most time-consuming and tedious task in ML projects. Amazon SageMaker Canvas is a low-code no-code visual interface to build and deploy ML models without the need to write code. Based on customers’ feedback, … Read more

Use IP-restricted presigned URLs to enhance security in Amazon SageMaker Ground Truth

Amazon SageMaker Ground Truth significantly reduces the cost and time required for labeling data by integrating human annotators with machine learning to automate the labeling process. You can use SageMaker Ground Truth to create labeling jobs, which are workflows where data objects (such as images, videos, or documents) need to be annotated by human workers. These … Read more

Unlock the power of structured data for enterprises using natural language with Amazon Q Business

One of the most common applications of generative artificial intelligence (AI) and large language models (LLMs) in an enterprise environment is answering questions based on the enterprise’s knowledge corpus. Pre-trained foundation models (FMs) excel at natural language understanding (NLU) tasks, including summarization, text generation, and question answering across a wide range of topics. However, they … Read more

Cohere Rerank 3 Nimble now generally available on Amazon SageMaker JumpStart

The Cohere Rerank 3 Nimble foundation model (FM) is now generally available in Amazon SageMaker JumpStart. This model is the newest FM in Cohere’s Rerank model series, built to enhance enterprise search and Retrieval Augmented Generation (RAG) systems. In this post, we discuss the benefits and capabilities of this new model with some examples. Overview … Read more

Perform generative AI-powered data prep and no-code ML over any size of data using Amazon SageMaker Canvas

Amazon SageMaker Canvas now empowers enterprises to harness the full potential of their data by enabling support of petabyte-scale datasets. Starting today, you can interactively prepare large datasets, create end-to-end data flows, and invoke automated machine learning (AutoML) experiments on petabytes of data—a substantial leap from the previous 5 GB limit. With over 50 connectors, … Read more

Delight your customers with great conversational experiences via QnABot, a generative AI chatbot

QnABot on AWS (an AWS Solution) now provides access to Amazon Bedrock foundational models (FMs) and Knowledge Bases for Amazon Bedrock, a fully managed end-to-end Retrieval Augmented Generation (RAG) workflow. You can now provide contextual information from your private data sources that can be used to create rich, contextual, conversational experiences. The advent of generative … Read more