How AWS Prototyping enabled ICL-Group to build computer vision models on Amazon SageMaker

This is a customer post jointly authored by ICL and AWS employees. ICL is a multi-national manufacturing and mining corporation based in Israel that manufactures products based on unique minerals and fulfills humanity’s essential needs, primarily in three markets: agriculture, food, and engineered materials. Their mining sites use industrial equipment that has to be monitored … Read more

Automate PDF pre-labeling for Amazon Comprehend

Amazon Comprehend is a natural-language processing (NLP) service that provides pre-trained and custom APIs to derive insights from textual data. Amazon Comprehend customers can train custom named entity recognition (NER) models to extract entities of interest, such as location, person name, and date, that are unique to their business. To train a custom model, you … Read more

Improve your Stable Diffusion prompts with Retrieval Augmented Generation

Text-to-image generation is a rapidly growing field of artificial intelligence with applications in a variety of areas, such as media and entertainment, gaming, ecommerce product visualization, advertising and marketing, architectural design and visualization, artistic creations, and medical imaging. Stable Diffusion is a text-to-image model that empowers you to create high-quality images within seconds. In November … Read more

Streamlining ETL data processing at Talent.com with Amazon SageMaker

This post is co-authored by Anatoly Khomenko, Machine Learning Engineer, and Abdenour Bezzouh, Chief Technology Officer at Talent.com. Established in 2011, Talent.com aggregates paid job listings from their clients and public job listings, and has created a unified, easily searchable platform. Covering over 30 million job listings across more than 75 countries and spanning various … Read more