Implement a custom AutoML job using pre-selected algorithms in Amazon SageMaker Automatic Model Tuning

AutoML allows you to derive rapid, general insights from your data right at the beginning of a machine learning (ML) project lifecycle. Understanding up front which preprocessing techniques and algorithm types provide best results reduces the time to develop, train, and deploy the right model. It plays a crucial role in every model’s development process … Read more

Best prompting practices for using the Llama 2 Chat LLM through Amazon SageMaker JumpStart

Llama 2 stands at the forefront of AI innovation, embodying an advanced auto-regressive language model developed on a sophisticated transformer foundation. It’s tailored to address a multitude of applications in both the commercial and research domains with English as the primary linguistic concentration. Its model parameters scale from an impressive 7 billion to a remarkable … Read more

Principal Financial Group uses AWS Post Call Analytics solution to extract omnichannel customer insights

An established financial services firm with over 140 years in business, Principal is a global investment management leader and serves more than 62 million customers around the world. Principal is conducting enterprise-scale near-real-time analytics to deliver a seamless and hyper-personalized omnichannel customer experience on their mission to make financial security accessible for all. They are … Read more

Foundational vision models and visual prompt engineering for autonomous driving applications

Prompt engineering has become an essential skill for anyone working with large language models (LLMs) to generate high-quality and relevant texts. Although text prompt engineering has been widely discussed, visual prompt engineering is an emerging field that requires attention. Visual prompts can include bounding boxes or masks that guide vision models in generating relevant and … Read more